/u/ki/swmclau2/.local/lib/python2.7/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
from pandas.core import datetools
-rw-r--r-- 1 swmclau2 des 1380000063 Nov 9 14:01 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat.npy
-rw-r--r-- 1 swmclau2 des 44100030 Nov 7 21:47 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixedCosmo.npy
-rw-r--r-- 1 swmclau2 des 248160034 Nov 7 20:52 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixedHOD.npy
-rw-r--r-- 1 swmclau2 des 50512034 Nov 7 17:00 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixedHOD_v3.npy
-rw-r--r-- 1 swmclau2 des 67144034 Nov 7 16:27 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixedHOD_v2.npy
-rw-r--r-- 1 swmclau2 des 125000007 Nov 5 18:33 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixed_omch2.npy
-rw-r--r-- 1 swmclau2 des 80730063 Nov 5 05:49 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_rf.npy
-rw-r--r-- 1 swmclau2 des 880000034 Nov 4 23:38 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_newhp2_fixedHOD.npy
-rw-r--r-- 1 swmclau2 des 120060063 Nov 4 19:47 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_newhp2.npy
-rw-r--r-- 1 swmclau2 des 61776034 Nov 4 17:01 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_newhp_fixedHOD.npy
-rw-r--r-- 1 swmclau2 des 211830063 Nov 4 15:58 /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_newhp.npy
-rw-r--r-- 1 swmclau2 des 13800063 Nov 2 15:34 /u/ki/swmclau2/des/PearceMCMC/500_walkers_100_steps_chain_cosmo_zheng_xi_lowmsat.npy
-rw-r--r-- 1 swmclau2 des 441663 Nov 2 11:40 /u/ki/swmclau2/des/PearceMCMC/50_walkers_500_steps_chain_cosmo_zheng_xi_rf.npy
-rw-r--r-- 1 swmclau2 des 23566434 Oct 30 23:50 /u/ki/swmclau2/des/PearceMCMC/100_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_hod.npy
-rw-r--r-- 1 swmclau2 des 4320030 Oct 30 22:27 /u/ki/swmclau2/des/PearceMCMC/100_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_cosmo.npy
-rw-r--r-- 1 swmclau2 des 425007 Oct 30 21:39 /u/ki/swmclau2/des/PearceMCMC/20_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_logM1.npy
-rw-r--r-- 1 swmclau2 des 1024007 Oct 30 20:30 /u/ki/swmclau2/des/PearceMCMC/20_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_alpha.npy
-rw-r--r-- 1 swmclau2 des 281504 Oct 30 11:06 /u/ki/swmclau2/des/PearceMCMC/20_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_H0.npy
-rw-r--r-- 1 swmclau2 des 471008 Oct 30 10:57 /u/ki/swmclau2/des/PearceMCMC/20_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_hod.npy
-rw-r--r-- 1 swmclau2 des 1760034 Oct 30 10:24 /u/ki/swmclau2/des/PearceMCMC/20_walkers_500_steps_chain_cosmo_zheng_xi_fixed_hod.npy
-rw-r--r-- 1 swmclau2 des 1000030 Oct 30 10:17 /u/ki/swmclau2/des/PearceMCMC/20_walkers_500_steps_chain_cosmo_zheng_xi_fixed_cosmo.npy
-rw-r--r-- 1 swmclau2 des 276000063 Oct 18 21:34 /u/ki/swmclau2/des/PearceMCMC/200_walkers_5000_steps_chain_cosmo_zheng_xi.npy
-rw-r--r-- 1 swmclau2 des 27600063 Oct 18 15:02 /u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_cosmo_zheng_xi.npy
-rw-r--r-- 1 swmclau2 des 2760063 Oct 18 14:31 /u/ki/swmclau2/des/PearceMCMC/100_walkers_100_steps_chain_cosmo_zheng_xi.npy
27M /u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_steps_chain_cosmo_zheng_xi.npy
2.7M /u/ki/swmclau2/des/PearceMCMC/100_walkers_100_steps_chain_cosmo_zheng_xi.npy
4.2M /u/ki/swmclau2/des/PearceMCMC/100_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_cosmo.npy
23M /u/ki/swmclau2/des/PearceMCMC/100_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_hod.npy
264M /u/ki/swmclau2/des/PearceMCMC/200_walkers_5000_steps_chain_cosmo_zheng_xi.npy
276K /u/ki/swmclau2/des/PearceMCMC/20_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_H0.npy
1008K /u/ki/swmclau2/des/PearceMCMC/20_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_alpha.npy
464K /u/ki/swmclau2/des/PearceMCMC/20_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_hod.npy
416K /u/ki/swmclau2/des/PearceMCMC/20_walkers_5000_steps_chain_cosmo_zheng_xi_fixed_logM1.npy
984K /u/ki/swmclau2/des/PearceMCMC/20_walkers_500_steps_chain_cosmo_zheng_xi_fixed_cosmo.npy
1.7M /u/ki/swmclau2/des/PearceMCMC/20_walkers_500_steps_chain_cosmo_zheng_xi_fixed_hod.npy
1.3G /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat.npy
43M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixedCosmo.npy
237M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixedHOD.npy
65M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixedHOD_v2.npy
49M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixedHOD_v3.npy
120M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_fixed_omch2.npy
203M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_newhp.npy
115M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_newhp2.npy
840M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_newhp2_fixedHOD.npy
59M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_lowmsat_newhp_fixedHOD.npy
77M /u/ki/swmclau2/des/PearceMCMC/500_walkers_10000_steps_chain_cosmo_zheng_xi_rf.npy
14M /u/ki/swmclau2/des/PearceMCMC/500_walkers_100_steps_chain_cosmo_zheng_xi_lowmsat.npy
436K /u/ki/swmclau2/des/PearceMCMC/50_walkers_500_steps_chain_cosmo_zheng_xi_rf.npy
true_vals = np.loadtxt('/u/ki/swmclau2/des/PearceMCMC/100_walkers_1000_truth_shuffled_sham.npy')
#print true_vals
vals = []
with open(fname) as f:
params = f.readline()[1:]
split_params = params.strip().strip('[]').split(',')
params = []
for p in split_params:
params.append(p.strip().strip("'"))
linestr = ''
linevals = np.zeros((len(params)))
i = 0
for line in f:
linestr+=line.replace('\n', ' ')
if linestr[-2] == ']': #we have a full actual line now
splitline = linestr.strip().strip('[]').split(' ')
idx = 0
for sl in splitline:
if sl != '' and sl != ' ':
linevals[idx] = float(sl)
idx+=1
vals.append(linevals)
linestr = ''
linevals = np.zeros((len(params)))
chain = np.array(vals)
[ 2.83803431e+00 1.41292022e+01 1.35394100e+01 6.85727937e+01
-1.00279197e+00 3.09689629e+00 1.15974561e-01 1.88601276e-01
1.00206447e+00 9.66233152e-01 2.21386617e-02]
#param_names = [r'$\log{M_{min}}$', r'$\mathcal{A}_{cen}$', r'$\log{M_0}$','$\log{M_1}$', r'$\mathcal{A}_{sat}$',\
# r'$\sigma_{log{M}}$', r'$\alpha$']
#param_names = [r'$\log{M_{min}}$',r'$f_c$', r'$\log{M_0}$',r'$\sigma_{log{M}}$', r'$\log{M_1}$', r'$\alpha$']
#param_names = [ r'$\mathcal{A}_{cen}$', r'$\mathcal{A}_{sat}$']
#param_names = [r'$\log{M_{min}}$', r'$\log{M_0}$','$\log{M_1}$', r'$\sigma_{log{M}}$', r'$\alpha$']
#param_names = [r'$\log{M_{min}}$', r'$\log{M_{lin}}$', r'$\log{M_0}$','$\log{M_1}$', r'$f_{cen}$',\
# r'$\sigma_{\log(M)}$', r'$\alpha$']
#param_names = [r'$\log{M_{min}}$', r'$\mathcal{A}_{cen}$', r'$\log{M_0}$','$\log{M_1}$',r'$\mathcal{B}_{sat}$',\
# r'$\mathcal{A}_{sat}$',r'$\mathcal{B}_{cen}$', r'$\sigma_{log{M}}$', r'$\alpha$']
hod_param_names = [r'$\log{M_{min}}$', r'$\log{M_0}$','$\log{M_1}$', r'$\sigma_{log{M}}$', r'$\alpha$']
ab_param_names = [ r'$\mathcal{A}_{cen}$',r'$\mathcal{B}_{cen}$', r'$\mathcal{A}_{sat}$',r'$\mathcal{B}_{sat}$']
Out[15]:
<chainconsumer.chain.ChainConsumer at 0x7f4a09d2f310>
#true_vals = np.array([true_vals])
emulation_point = [('f_c', 0.233), ('logM0', 12.0), ('sigma_logM', 0.533),
('alpha', 1.083),('logM1', 13.5), ('logMmin', 12.233)]
#true_vals = np.array([12.233, 12.0, 0.533, 13.5, 1.083])
{'Neff': 3.7, 'H0': 70.7317, 'w0': -1.13151, 'omch2': 0.12283, 'ln10As': 3.11395, 'ns': 0.953515, 'ombh2': 0.0217629}
/u/ki/swmclau2/.local/lib/python2.7/site-packages/chainconsumer/helpers.py:5: VisibleDeprecationWarning: Passing `normed=True` on non-uniform bins has always been broken, and computes neither the probability density function nor the probability mass function. The result is only correct if the bins are uniform, when density=True will produce the same result anyway. The argument will be removed in a future version of numpy.
hist, be = np.histogram(data, weights=weight, bins=1000, normed=True)
/u/ki/swmclau2/.local/lib/python2.7/site-packages/chainconsumer/analysis.py:254: VisibleDeprecationWarning: Passing `normed=True` on non-uniform bins has always been broken, and computes neither the probability density function nor the probability mass function. The result is only correct if the bins are uniform, when density=True will produce the same result anyway. The argument will be removed in a future version of numpy.
hist, edges = np.histogram(data, bins=bins, normed=True, weights=weights)
/u/ki/swmclau2/.conda/envs/hodemulator/lib/python2.7/site-packages/matplotlib/figure.py:403: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure
"matplotlib is currently using a non-GUI backend, "
fig = c.plotter.plot(figsize=(10,10), truth = [0.12283])#, truth = true_vals)# parameters = [param_names[i] for i in (1, 4)])
#, truth = true_vals)
fig.show()
Gelman-Rubin Statistic values for chain 0
$N_{eff}$: 1.00198 (Passed)
$\log(M_0)$: 1.00044 (Passed)
$\log(M_1)$: 1.00296 (Passed)
$H_0$: 1.00358 (Passed)
$w_0$: 1.00328 (Passed)
$\ln(10A_s)$: 1.00083 (Passed)
$\Omega_c h^2$: 1.00242 (Passed)
$\sigma_{\log M }$: 1.00475 (Passed)
$\alpha$: 1.00336 (Passed)
$n_s$: 1.00615 (Passed)
$\Omega_b h^2$: 1.00058 (Passed)
True
Out[27]:
array([2.69140711e-01, 1.43250170e-01, 6.85165614e-02, 1.19365383e+00,
6.87582015e-02, 2.54725105e-02, 3.20008769e-03, 2.43849169e-02,
2.79199467e-02, 3.21567530e-03, 2.83697971e-04])
$\log(M_0)$ 14.150893091564047
$\ln(10A_s)$ 3.0979170792187216
$\alpha$ 1.0012438676638478
$n_s$ 0.9663047784313639
$\Omega_c h^2$ 0.11500779571717756
$w_0$ -0.9828754354383403
$N_{eff}$ 2.7436899620084945
$\sigma_{\log M }$ 0.18705624746061056
$\Omega_b h^2$ 0.022195875640021265
$H_0$ 68.32496859004542
$\log(M_1)$ 13.542580923036377
[ 2.74368996e+00 1.41508931e+01 1.35425809e+01 6.83249686e+01
-9.82875435e-01 3.09791708e+00 1.15007796e-01 1.87056247e-01
1.00124387e+00 9.66304778e-01 2.21958756e-02]
['$N_{eff}$', '$\\log(M_0)$', '$\\log(M_1)$', '$H_0$', '$w_0$', '$\\ln(10A_s)$', '$\\Omega_c h^2$', '$\\sigma_{\\log M }$', '$\\alpha$', '$n_s$', '$\\Omega_b h^2$']